

Real-time Security-Constrained Economic Dispatch and Commitment in the PJM : Experiences and Challenges

Simon Tam

Manager, Markets Coordination

PJM Interconnection

June 29, 2011

Real Time and Day Ahead Market Cycle

Drivers for dispatch software innovation

- At certain times, resource owners perceive dispatch instructions as 'unrealistic'. Proactive dispatch signals with higher stability are desired.
- Greater efficiency and lower overall production cost is achievable.
- Advances in operator visualization tools have demonstrated value in continued emphasis on operational trend analysis to increase situational awareness.
- Technology advances provide opportunity to integrate trend analysis into optimization and to accommodate more sophisticated and adaptive resource models

Security Constrained Economic Dispatch Issues

- Previous Economic Dispatch Tools
 - Real-time Unit Dispatch System (RT UDS)
 - Projecting out 15 minutes to dispatch online units
 - No CT commitment, only de-commitment
 - Look-Ahead Unit Dispatch System (LA UDS)
 - Projecting out 15, 30, 45, & 75 minutes to commit CTs
 - No coupling of LA solutions or coupling of RT UDS and LA UDS results
- The lack of continuity between solutions was not in synch with dispatcher's operating plan
- Poor continuity between user interface and work performed by dispatchers

- The objective is to yield a time-coupled resource operating plan
 - Introduce multi interval/multi horizon solution with dynamic contour projection for individual resource dispatch instructions
 - Employ a "time-coupled" optimization engine
 - Realistic generator characteristics and behavior
- Dispatcher-focused user interface
 - Unit dispatch and transmission constraint information are displayed in a more integrated and relevant format
 - Many dispatcher actions can occur directly from the user interface

Generation Control Application (GCA) is the PJM solution to real-time CT commitment and real-time economic dispatch. GCA consists of the four high-level functions:

Automatic Generation Control (AGC)

Multi-interval Security Constrained Economic Dispatch (SCED)

Rea-time SCED & Intermediate Term (IT) SCED

Adaptive Constraint Model (ACM) – In evaluation phase

Adaptive Generator Model (AGM) – In evaluation phase

UDS vs. SCED

RT & IT SCED

Why are there two SCEDs?

- Processing Speed
- Each has its own objective
- IT SCED
 - CT commitment
 - Guide RT SCED
- RT SCED
 - On-line unit dispatch
 - Pricing Calculation
- 2 Independent engines
 - But IT SCED creates a path for RT SCED to follow
 - This path is referred to as an Envelope

Envelope Concept

Inputs to the SCED Engine

Data	Update rate
Load Forecast	5 minutes
EES Transaction Data	5 minutes
Generator MW output	2 minutes
Transmission Constraints	2 minutes
eMkt – Unit Hourly Updates	1 minute
GPM and AGM	1 minute
Unit bid, schedule, ramp rate, etc.	Available for each case execution from daily input file.
Regulation and Spinning status	Available for each case execution upon becoming effective

- Operational history of resource used to predict response to certain dispatch instructions
- Predicted response used in determining dispatch instruction to be issued to resource
- Six parameters are created by AGM
 - Control (Min, Max) MW
 - iRamp Rate(Up,Down)
 - icontrol (Min, Max) MW
- Concept is ... probabilistic response model replaces the need to correct bad offer data or explicitly model mill points, dead bands, forbidden zones etc.

- Provide analysis to evaluate near-term line loading trends (and PV characteristics) to adapt constraint control strategy based on current conditions
- Group, rank and prioritize active transmission constraints
- Incorporate historical data to assist in anticipating and strategizing constraint control actions
- Concept is to reduce number of "hard" limits that are introduced into the optimization phase

- AGM pilot of ~20 units
 - This provides better unit-specific capabilities for the internal solution
 - The external control points will still be based on bid-in parameters
 - We will continue to work with members to refine this calculation
 - Potential for feedback to the members based on this data – (~1 year from now)
- ACM working to develop a more proactive analysis of recent constraint history to predict future constraint loading.

SCED User Interface

Tangerine (+): Increase in MW (Raise)

Blue (-): Decrease in MW (Lower)

- Adaptive Models enhance performance of dispatch engines
- Real-time Optimization performance must improve to support automation
- Trend visualization well received by dispatchers
- Market response will be enhanced by reduction in dispatch base point volatility and producing dispatch signal trajectories for all resources

Real Time and Day Ahead Market Cycle

- "Perfect Dispatch" (PD) calculates the after-thefact hypothetical least bid production cost (BPC) dispatch using the actual load, interchange, system topology and transmission constraints.
 - PD optimizes the dispatch of the online steam units and all the CT commitments.
- PD objectively evaluates the PJM's performance in dispatching the real-time system by comparing the actual bid production cost with optimized "Perfect" solution.

Factors Affecting Perfect Dispatch

- After-the-fact, calculated, Perfect Dispatch solution could never be achieved in actual operations
- The dispatchers must make dispatch decisions based on forecasts of load, interchange, etc. which will never consistently represent actual values
- The dispatchers must also anticipate failure of generators to follow dispatch signals exactly
- The dispatchers must always act with reliability as their primary consideration, requiring them to err on the side of committing slightly more generation rather than less

- Perfect Dispatch allows us to:
 - Discover better ways to optimize the dispatch solution
 - Incorporate lessons learned into dispatch actions
 - Synthesize results into actionable plan
 - Leverage operational patterns to reduce uncertainty
- Initial analysis before 11 am each day
- Often, the same plan applies day after day as similar conditions arise
 - Recognizing CT needs and patterns
 - Adjusting to major system outages

Sample output of Perfect Dispatch – Economic CTs

Sample output of Perfect Dispatch – CTs for a constraint ctrl

2011 Perfect Dispatch Performance

Perfect Dispatch Estimated Production Cost Savings¹ Through March 2011

¹ Estimated Production Cost Savings based on 2008 Year-End Performance of 98.36%.

Future Development Opportunities

www.pjm.com PJM©2011

Future Developments - SCED and UI Advances

- Advances in operator visualization tools have demonstrated value in continued emphasis on operational trend analysis to increase situational awareness.
- Automated input data error detection / correction
- Technology advances should integrate trend analysis into optimization and to accommodate more sophisticated and adaptive resource models

Future - Incorporate Perfect Dispatch in Control Engines

- Concept is...turn after-the-fact analysis results into real-time actions
- Better visualization of the how the PD results incorporate into an action plan to improve the next day operation.
- Incorporate PD results as input into IT and RT SCED engines.

Future Work - Improved Data for Real Time Constraints

- Improved visualization of the approaching constraints and interaction between constraints
 - Seeing potential constraints hours before they occur provides more options for control and smoother control
 - Representation of control options
 - Prioritize dispatch actions based on facility loading trends/projections
 - Reduce dispatch volatility due to sudden changes in constraint loading

